
Home > Numbers
Leonard and Fifi (Posted on 2025-04-12) |
|
Leonard Pisano's young daughter, Fifi, was visiting him at work.
Fifi read from a letter on her father's desk. βFind a square number which, being increased or diminished by 5, gives a square number. What does that mean?'
'It's John's congruum problem, considered over the rationals,' Leonard replied. 'One solution is 31^2/12^2, 41^2/12^2, and 49^2/12^2, since 49^2/12^2-41^2/12^2=41^2/12^2-31^2=5. It's a neat problem - people will likely still be puzzling over it 800 years from now.'
'And does it just work for a gap of 5?' asked Fifi, 'or other numbers as well?'
'Great question,' said Leonard. 'Solutions for gaps of 6,14,15, and so on are ten a penny. 5 took a little thought, and 7 even more. In principle there should be solutions for 13 and 29, too, but I'm still working on those.'
Can you find a solution with a gap of 7? Can you show that it is minimal?
If so, how about 13 and 29?
No Solution Yet
|
Submitted by broll
|
No Rating
|
|
No Subject
|
Comment 2 of 2 |
|
<article class="text-token-text-primary w-full" dir="auto" data-testid="conversation-turn-2" data-scroll-anchor="true"> <h3 data-start="281" data-end="317" class="">π Understanding the Problem</h3>
We are to find three rational square numbers in arithmetic progression, i.e.,
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mrow><mo fence="true">(</mo><mfrac><mrow><mi>a</mi><mo>β</mo><mi>d</mi></mrow><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo separator="true">,</mo><msup><mrow><mo fence="true">(</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo separator="true">,</mo><msup><mrow><mo fence="true">(</mo><mfrac><mrow><mi>a</mi><mo>+</mo><mi>d</mi></mrow><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\left(\frac{a - d}{b}\right)^2, \left(\frac{a}{b}\right)^2, \left(\frac{a + d}{b}\right)^2</annotation></semantics></math>(baβdβ)2,(baβ)2,(ba+dβ)2
with the property that the common difference between their squares is a fixed number <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math>c, i.e.,
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mrow><mo fence="true">(</mo><mfrac><mrow><mi>a</mi><mo>+</mo><mi>d</mi></mrow><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>β</mo><msup><mrow><mo fence="true">(</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>=</mo><mi>c</mi><mspace linebreak="newline"></mspace><msup><mrow><mo fence="true">(</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>β</mo><msup><mrow><mo fence="true">(</mo><mfrac><mrow><mi>a</mi><mo>β</mo><mi>d</mi></mrow><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>=</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">\left(\frac{a + d}{b}\right)^2 - \left(\frac{a}{b}\right)^2 = c \\
\left(\frac{a}{b}\right)^2 - \left(\frac{a - d}{b}\right)^2 = c</annotation></semantics></math>(ba+dβ)2β(baβ)2=c(baβ)2β(baβdβ)2=c
These simplify to:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mrow><mo fence="true">(</mo><mfrac><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>d</mi><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>β</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac><mo fence="true">)</mo></mrow><mo>=</mo><mi>c</mi><mo>β</mo><mfrac><mrow><mn>2</mn><mi>a</mi><mi>d</mi><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac><mo>=</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">\left(\frac{(a + d)^2 - a^2}{b^2}\right) = c \Rightarrow \frac{2ad + d^2}{b^2} = c</annotation></semantics></math>(b2(a+d)2βa2β)=cβb22ad+d2β=c
Similarly:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mn>2</mn><mi>a</mi><mi>d</mi><mo>β</mo><msup><mi>d</mi><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac><mo>=</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">\frac{2ad - d^2}{b^2} = c</annotation></semantics></math>b22adβd2β=c
So we get:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mn>2</mn><mi>a</mi><mi>d</mi><mo>Β±</mo><msup><mi>d</mi><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac><mo>=</mo><mi>c</mi><mo>β</mo><mn>2</mn><mi>a</mi><mi>d</mi><mo>=</mo><mi>c</mi><msup><mi>b</mi><mn>2</mn></msup><mo>Β±</mo><msup><mi>d</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\frac{2ad \pm d^2}{b^2} = c
\Rightarrow 2ad = c b^2 \pm d^2</annotation></semantics></math>b22adΒ±d2β=cβ2ad=cb2Β±d2
But most straightforwardly, we can work with:
Let <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo separator="true">,</mo><msup><mi>y</mi><mn>2</mn></msup><mo separator="true">,</mo><msup><mi>z</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">x^2, y^2, z^2</annotation></semantics></math>x2,y2,z2 be the squares in arithmetic progression with difference <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math>c. Then:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>β</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><msup><mi>z</mi><mn>2</mn></msup><mo>β</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mi>c</mi><mo>β</mo><msup><mi>z</mi><mn>2</mn></msup><mo>β</mo><mn>2</mn><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">y^2 - x^2 = z^2 - y^2 = c
\Rightarrow z^2 - 2y^2 + x^2 = 0</annotation></semantics></math>y2βx2=z2βy2=cβz2β2y2+x2=0
So we can find such rational triples by solving:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>z</mi><mn>2</mn></msup><mo>=</mo><mn>2</mn><msup><mi>y</mi><mn>2</mn></msup><mo separator="true">,</mo><mspace width="1em"></mspace><msup><mi>z</mi><mn>2</mn></msup><mo>β</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>2</mn><mi>c</mi></mrow><annotation encoding="application/x-tex">x^2 + z^2 = 2y^2, \quad z^2 - x^2 = 2c</annotation></semantics></math>x2+z2=2y2,z2βx2=2c
<hr data-start="1283" data-end="1286" class="">
<h3 data-start="1288" data-end="1324" class="">β
Known solution for gap = 7</h3>
Letβs try to find a minimal solution with gap 7.
Suppose <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo separator="true">,</mo><msup><mi>y</mi><mn>2</mn></msup><mo separator="true">,</mo><msup><mi>z</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">x^2, y^2, z^2</annotation></semantics></math>x2,y2,z2 are rational squares with common difference <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7</mn></mrow><annotation encoding="application/x-tex">7</annotation></semantics></math>7.
We can use a known parametrization of three rational squares in AP:
Letβs suppose:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>x</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>β</mo><mi>d</mi></mrow><mi>b</mi></mfrac><mo separator="true">,</mo><mspace width="1em"></mspace><mi>y</mi><mo>=</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo separator="true">,</mo><mspace width="1em"></mspace><mi>z</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>+</mo><mi>d</mi></mrow><mi>b</mi></mfrac><mo>β</mo><msup><mi>x</mi><mn>2</mn></msup><mo separator="true">,</mo><msup><mi>y</mi><mn>2</mn></msup><mo separator="true">,</mo><msup><mi>z</mi><mn>2</mn></msup><mtext> are in AP if </mtext><msup><mi>z</mi><mn>2</mn></msup><mo>β</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup><mo>β</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">x = \frac{a - d}{b},\quad y = \frac{a}{b},\quad z = \frac{a + d}{b}
\Rightarrow x^2, y^2, z^2 \text{ are in AP if } z^2 - y^2 = y^2 - x^2 = c</annotation></semantics></math>x=baβdβ,y=baβ,z=ba+dββx2,y2,z2 are in AP if z2βy2=y2βx2=c
The square values are:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mrow><mo fence="true">(</mo><mfrac><mrow><mi>a</mi><mo>β</mo><mi>d</mi></mrow><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo separator="true">,</mo><msup><mrow><mo fence="true">(</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo separator="true">,</mo><msup><mrow><mo fence="true">(</mo><mfrac><mrow><mi>a</mi><mo>+</mo><mi>d</mi></mrow><mi>b</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>β</mo><mtext>difference is </mtext><mfrac><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>d</mi><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>β</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mi>a</mi><mi>d</mi><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">\left(\frac{a - d}{b}\right)^2, \left(\frac{a}{b}\right)^2, \left(\frac{a + d}{b}\right)^2
\Rightarrow \text{difference is } \frac{(a + d)^2 - a^2}{b^2} = \frac{2ad + d^2}{b^2}</annotation></semantics></math>(baβdβ)2,(baβ)2,(ba+dβ)2βdifference is b2(a+d)2βa2β=b22ad+d2β
So to get common difference 7, we solve:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mn>2</mn><mi>a</mi><mi>d</mi><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></mrow><msup><mi>b</mi><mn>2</mn></msup></mfrac><mo>=</mo><mn>7</mn><mo>β</mo><mn>2</mn><mi>a</mi><mi>d</mi><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup><mo>=</mo><mn>7</mn><msup><mi>b</mi><mn>2</mn></msup><mo>β</mo><mi>d</mi><mo stretchy="false">(</mo><mn>2</mn><mi>a</mi><mo>+</mo><mi>d</mi><mo stretchy="false">)</mo><mo>=</mo><mn>7</mn><msup><mi>b</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\frac{2ad + d^2}{b^2} = 7
\Rightarrow 2ad + d^2 = 7b^2
\Rightarrow d(2a + d) = 7b^2</annotation></semantics></math>b22ad+d2β=7β2ad+d2=7b2βd(2a+d)=7b2
Letβs try small integers to solve this Diophantine equation.
Try <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">d = 1</annotation></semantics></math>d=1:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>1</mn><mo stretchy="false">(</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mn>7</mn><msup><mi>b</mi><mn>2</mn></msup><mo>β</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>7</mn><msup><mi>b</mi><mn>2</mn></msup><mo>β</mo><mn>2</mn><mi>a</mi><mo>=</mo><mn>7</mn><msup><mi>b</mi><mn>2</mn></msup><mo>β</mo><mn>1</mn><mo>β</mo><mi>a</mi><mo>=</mo><mfrac><mrow><mn>7</mn><msup><mi>b</mi><mn>2</mn></msup><mo>β</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">1(2a + 1) = 7b^2 \Rightarrow 2a + 1 = 7b^2
\Rightarrow 2a = 7b^2 - 1 \Rightarrow a = \frac{7b^2 - 1}{2}</annotation></semantics></math>1(2a+1)=7b2β2a+1=7b2β2a=7b2β1βa=27b2β1β
Try <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">b = 1</annotation></semantics></math>b=
|
 |
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|