Home > Shapes > Geometry
Tetrahedral Dilemma (Posted on 2004-06-23) |
|
Suppose you have a sphere of radius R and you have four planes that are all tangent to the sphere such that they form an arbitrary tetrahedron (it can be irregular). What is the ratio of the surface area of the tetrahedron to its volume?
|
Submitted by SilverKnight
|
Rating: 4.5000 (2 votes)
|
|
Solution:
|
(Hide)
|
For each face of the tetrahedron, construct a new tetrahedron with that face as the base and the center of the sphere as the fourth vertex. Now the original tetrahedron is divided into four smaller ones, each of height R. The volume of a tetrahedron is Ah/3 where A is the area of the base and h the height; in this case h=R. Combine the four tetrahedra algebraically to find that the volume of the original tetrahedron is R/3 times its surface area. |
Comments: (
You must be logged in to post comments.)
|
|
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|