![](/images/dot.gif)
Home > Numbers
Take non decreasing, get non negative (Posted on 2007-05-29) |
|
Determine the total number of non-negative integers containing not more than 41 decimal digits but having non-decreasing digits.
For example, 33455 is a valid instance of such integers while 98 is not.
|
Submitted by K Sengupta
|
Rating: 4.3333 (3 votes)
|
|
Solution:
|
(Hide)
|
The required total number of non-negative integers is: 50C9 = 2505433700
EXPLANATION:
Let mCn represent the binomial coefficient m!/(n! (m-n)! ). We prove first a simple lemma: kCk + (k+1)Ck + (k+2)Ck + ... + nCk = (n+1)C(k+1). This is an almost trivial induction. It is obviously true for n = k. Suppose it is true for n. Then the sum up to (n+1)Ck = (n+1)C(k+1) + (n+1)Ck = (n+2)C(k+1) as required.
Call numbers with non-decreasing digits NDDs. 0 is a special case, it is the only NDD involving the digit zero. It is convenient to regard 0 as having 0 digits. With this convention, we show that in base n there are (n+m-2)Cm NDDs with m digits. We use induction on m. Clearly the result is true for m = 1 (and any n) provided we accept the convention just stated. Suppose it is true for m. Now consider an m+1 digit number.
If its first digit is 1, then the remaining digits form an m digit NDD, so there are just (n+m-2)Cm possibilities. If the first digit is 2, then the remaining m digits are all at least 2, so the number of possibilities is the same as for m digit NDDs to base m-1, which is (n+m-3)Cm. Similarly, for first digit 3 we have (n+m-4)Cm possibilities, and so on down to (n+m-n)Cm = 1 possibilities for first digit n. Hence the total number of possibilities is mCm + (m+1)Cm + (m+2)Cm + ... + (m+n-2)Cm = (m+n-1)C(m+1), by the lemma. So the result is true for m+1. Hence for all m.
In particular, there are (n+8)C8 n-digit decimal NDDs. Note that n=0 also gives the correct number 1 for 0-digit numbers. Hence there are 8C8 + 9C8 + ... + 49C8 decimal numbers with at most 41 digits and all digits non-decreasing.
Applying the lemma again, this sum is 50C9 = 2505433700.
**********************************
Also check out Charlie's methodology provided in this location .
****************************************
*** Adapted from a problem appearing in 10th Balkan Math Olympiad.
|
Comments: (
You must be logged in to post comments.)
|
![](/images/dot.gif) |
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|