Let XY denote the vector from point X to point Y.
If points X, Y, and Z are non-collinear and XW = aXY + bXZ, then
W lies on line YZ if and only if a + b = 1.
Let X and Y be the centers of circles with radii x and y ( |XY| > x + y ).
If E and I are the intersections of the external and internal tangents respectively,
then
x x
XE = ----- XY and XI = ----- XY
x-y x+y
For our problem we have
a a
AP = ----- AB and AL = ----- AB
a-b a+b
a a
AQ = ----- AC and AM = ----- AC
a-c a+c
b
BR = ----- BC
b-c
-----------------------------------------------------
b
AR = AB + BR = AB + ----- BC
b-c
b
= AB + ----- (AC - AB)
b-c
c b
= ----- AB + ----- AC
c-b b-c
c(a-b) b(a-c)
= -------- AP + -------- AQ
a(c-b) a(b-c)
c(a+b) b(a+c)
= -------- AL + -------- AM
a(c-b) a(b-c)
-----------------------------------------------------
Since
c(a-b) b(a-c)
-------- + -------- = 1
a(c-b) a(b-c)
P, Q, and R are collinear.
Since
c(a+b) b(a+c)
-------- + -------- = 1
a(c-b) a(b-c)
L, M, and R are collinear.
|