All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Color Coded Cubes (Posted on 2007-10-30) Difficulty: 4 of 5
There is a set of cubes of three different colors: red, blue and yellow and their edges are of integer length.

In the following statements the bold capital letters refer to specific digits with a one-to-one correspondence of digit to letter.

The volume of each red cube is NIL.
The face of each blue cube has NO area.
The volume of each yellow cube is ZERO.
The total volume of all the cubes is NOTHING.

There are NO cubes of one of the colors, and NONE of another.

How many cubes are there of the remaining color, and what is that color?

  Submitted by Charlie    
Rating: 3.6667 (3 votes)
Solution: (Hide)
       vol of                number of    total volume
      each cube               cubes
red      125 (NIL)             1610 (NONE)   201250
blue      64 (NO^(3/2) = OZ)  21413         1370432          *
yellow  4096 (ZERO)              16 (NO)      65536
                                            -------
                                            1637218 (NOTHING)

The *'ed line contains the answer: 21,413 blue cubes.

DEFDBL A-Z
CLS
PRINT "In order: red, blue, yellow."

FOR n = 1 TO 9
 taken(n) = 1
FOR i = 0 TO 9
 IF taken(i) = 0 THEN
  taken(i) = 1

FOR l = 0 TO 9
 IF taken(l) = 0 THEN
  taken(l) = 1
  nil = n * 100 + i * 10 + l
  cr = INT(nil ^ (1 / 3) + .5)
  IF cr * cr * cr = nil THEN

FOR o = 0 TO 9
 IF taken(o) = 0 THEN
  taken(o) = 1
  no = 10 * n + o
  sr = INT(SQR(no) + .5)
  IF sr * sr = no THEN


FOR z = 1 TO 9
 IF taken(z) = 0 THEN
  taken(z) = 1

FOR e = 0 TO 9
 IF taken(e) = 0 THEN
  taken(e) = 1

FOR r = 0 TO 9
 IF taken(r) = 0 THEN
  taken(r) = 1
  zero = z * 1000 + e * 100 + 10 * r + o
  cr2 = INT(zero ^ (1 / 3) + .5)
  IF cr2 * cr2 * cr2 = zero THEN

FOR t = 0 TO 9
 IF taken(t) = 0 THEN
  taken(t) = 1

FOR h = 0 TO 9
 IF taken(h) = 0 THEN
  taken(h) = 1

FOR g = 0 TO 9
 IF taken(g) = 0 THEN
  taken(g) = 1
  nothing = n * 1000010 + o * 100000 + t * 10000 + h * 1000 + i * 100 + g
  none = no * 100 + n * 10 + e

volRed = nil
volBlue = sr * sr * sr
volYellow = zero


remVol = nothing - no * volRed - none * volBlue
q = INT(remVol / volYellow)
IF q * volYellow = remVol THEN
  PRINT volRed, no
  PRINT volBlue, none
  PRINT volYellow, q, "*"
END IF

remVol = nothing - no * volBlue - none * volRed
q = INT(remVol / volYellow)
IF q * volYellow = remVol THEN
  PRINT volRed, none
  PRINT volBlue, no
  PRINT volYellow, q, "*"
END IF

remVol = nothing - no * volRed - none * volYellow
q = INT(remVol / volBlue)
IF q * volBlue = remVol THEN
  PRINT volRed, no
  PRINT volBlue, q, "*"
  PRINT volYellow, none
END IF

remVol = nothing - none * volRed - no * volYellow
q = INT(remVol / volBlue)
IF q * volBlue = remVol THEN
  PRINT volRed, none
  PRINT volBlue, q, "*"
  PRINT volYellow, no
END IF

remVol = nothing - none * volBlue - no * volYellow
q = INT(remVol / volRed)
IF q * volRed = remVol THEN
  PRINT volRed, q, "*"
  PRINT volBlue, none
  PRINT volYellow, no
END IF

remVol = nothing - no * volBlue - none * volYellow
q = INT(remVol / volRed)
IF q * volRed = remVol THEN
  PRINT volRed, q, "*"
  PRINT volBlue, no
  PRINT volYellow, none
END IF

  taken(g) = 0
 END IF
NEXT g

  taken(h) = 0
 END IF
NEXT h

  taken(t) = 0
 END IF
NEXT t

  END IF
  taken(r) = 0
 END IF
NEXT r

  taken(e) = 0
 END IF
NEXT e

  taken(z) = 0
 END IF
NEXT z

  END IF
  taken(o) = 0
 END IF
NEXT o


  END IF
  taken(l) = 0
 END IF
NEXT l

  taken(i) = 0
 END IF
NEXT i
 taken(n) = 0
NEXT n

From Enigma No. 1462, by Albert Haddad, New Scientist, 29 September 2007

Comments: ( You must be logged in to post comments.)
  Subject Author Date
answerK Sengupta2007-11-10 04:31:02
SolutionCyriis2007-11-07 01:39:40
Solutionanalytical solutionDaniel2007-10-31 04:02:17
SolutionSolutionDej Mar2007-10-30 11:20:47
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information