Construct line segments AC and CE.
Let b = |AB| = |BC|, d = |CD| = |DE|, f = |AC|, and h = |CE|.
From isosceles triangles ABC and CDE, we get
/BCA = 15° and /DCE = 75°
From the given information, we get
f = 2*b*cos(15°)
h = 2*d*cos(75°) = 2*d*sin(15°)
Thus,
f*h = 2*b*d*2*cos(15°)*sin(15°) = 2*b*d*sin(30°) = b*d
Letting x = /ACE and applying the Cosine Law to triangle BCD, we get
4 = 22 = b2 + d2 - 2*b*d*cos(x + 90°) = b2 + d2 + 2*b*d*sin(x)
Hence,
Area(ABCDE) = Area(ABC) + Area(CDE) + Area(ACE)
= ½*b2*sin(150°) + ½*d2*sin(30°) + ½*f*h*sin(x)
= ¼*[b2 + d2 + 2*b*d*sin(x)] = ¼[4]
= 1
|