For AB = C : 48
- (34105, 7, 8629)
- (13074, 8, 5692)
- (21547, 8, 99063)
- ( 5730, 12, 9684)
- ( 3672, 14, 9508)
- ( 865, 39, 12407)
- ( 568, 49, 12307)
- ( 436, 52, 10978)
- ( 706, 52, 18934)
- ( 682, 54, 17930)
- ( 701, 59, 24368)
- ( 502, 63, 19847)
- ( 802, 67, 35914)
- ( 510, 69, 23874)
- ( 360, 72, 15984)
- ( 675, 83, 41920)
- ( 304, 85, 21679)
- ( 203, 86, 14795)
- ( 270, 86, 15394)
- ( 279, 86, 15403)
- ( 205, 96, 18437)
- ( 835, 96, 74021)
- ( 340, 97, 28615)
- ( 85, 1204, 9637)
- ( 47, 1269, 5083)
- ( 46, 1273, 5098)
- ( 58, 1279, 6403)
- ( 65, 1304, 7829)
- ( 67, 1342, 8059)
- ( 75, 1403, 9826)
- ( 40, 1738, 6952)
- ( 28, 1749, 3506)
- ( 39, 1806, 5427)
- ( 45, 1826, 7309)
- ( 40, 1963, 7852)
- ( 37, 2059, 6184)
- ( 39, 2157, 6480)
- ( 34, 2605, 7819)
- ( 25, 3407, 6819)
- ( 28, 3471, 6950)
- ( 28, 3519, 7046)
- ( 28, 3549, 7106)
- ( 25, 3698, 7401)
- ( 25, 4067, 8139)
- ( 25, 4079, 8163)
- ( 25, 4307, 8619)
- ( 28, 4671, 9350)
- ( 28, 4761, 9530)
For AB = C : 0, as all integers is given to be greater than zero. If B were permitted to be 0 (as was my initial intent to allow), the value would be 40320 (8! permutations of the digits 2 through 9 for A, with B and C being 0 and 1, respectively). |