--------------------------------------------------------------
G E O M E T R Y S O L U T I O N
--------------------------------------------------------------
Let O be the center of circle K. The ray AO intersects side
BC at point N and the circle again at point M. Let Q and R
be points on line m such that NQ and MR are perpendicular
to m.
Lemma: Let WXYZ be a trapezoid with WX parallel to YZ.
Let a line parallel to WX intersect sides WZ and
XY in points S and T respectively. If |WS| = |SZ|,
then |WX| + |YZ| = 2|ST|.
Using the lemma,
|AO| = |OM| ==> |AD| + |MR| = 2|OP| (1)
|BN| = |NC| ==> |BE| + |CF| = 2|NQ| (2)
|ON| = |NM| ==> |OP| + |MR| = 2|NQ| (3)
Combining (1) and (2) we get
|AD| + |BE| + |CF| = 2|OP| - |MR| + 2|NQ| (4)
Combining (3) and (4) we get
|AD| + |BE| + |CF| = 3|OP| = 3|OA| = 2|AN|
twice the length of an altitude of ABC.
--------------------------------------------------------------
V E C T O R S O L U T I O N
--------------------------------------------------------------
Let the circle K have unit radius and center O.
Let ST denote the vector from point S to point T,
0 the zero vector, i the unit vector in the
direction PO, and j the unit vector perpendicular
to i. Thus,
PO + OA + AD + DP = 0
PO + OB + BE + EP = 0
PO + OC + CF + FP = 0
or
i + OA - |AD|i + dj = 0
i + OB - |BE|i + ej = 0
i + OC - |EF|i + fj = 0
Adding these together,
{ 3 - (|AD| + |BE| + |CF|)}i + {OA + OB + OC} +
{d + e + f}j = 0
Therefore,
|AD| + |BE| + |CF| = 3 = 2(3/2)
twice the length of an altitude of ABC.
--------------------------------------------------------------
T R I G O N O M E T R Y S O L U T I O N
--------------------------------------------------------------
Let the circle K have unit radius and center O.
Let the measure of angle POA be t. Then,
|AD| = 1 - cos(t)
|BE| = 1 - cos(t+120)
|CF| = 1 - cos(t+240)
Adding these gives
|AD| + |BE| + |CF| = 3 - cos(t) - cos(t+120) - cos(t+240)
= 3 = 2(3/2)
twice the length of an altitude of ABC.
|