Let Q, R, and S be the intersections of ray AP and
side CD, line AC and diagonal BD, and line AD and
diagonal CE respectively.
Using the similarity of triangles ABC, ACD, and ADE:
/BCD = /BCA + /ACD
= /CDA + /ADE = /CDE
|CB| |CA| |DA| |DC|
------ = ------ = ------ = ------
|CD| |DA| |EA| |DE|
Therefore, ΔBCD ~ ΔCDE.
/RDC = /BDC = /CED = /SED
/DCR = /DCA = /EDA = /EDS
Therefore, ΔRCD ~ ΔSDE.
|RC| |CD| |AC| |AR| + |RC|
------ = ------ = ------ = -------------
|DS| |DE| |DA| |DS| + |SA|
or
|AR||DS| = |RC||SA| (1)
By Ceva's theorem,
|AR||CQ||DS| = |RC||QD||SA| (2)
Combining (1) and (2) gives,
|CQ| = |QD|
Thus, ray AP bisects side CD.
|