Let a = |BC|, b = |CA|, c = |AB|, x = |DE|, and y = |FG|.
From the similar right triangles ABC, ADB, and BDC we get
|DA| = c2/b,
|DB| = ac/b,
|DC| = a2/b.
|FG| + |GM| = |FM| ==>
|FG|2 + 2|GM||FG| + |GM|2 = |FC|2 + |CM|2 ==>
|FG|2 + 2|GM||FG| = |DB|2 ==>
y2 + by = (ac/b)2 ==>
b2y2 + b3y = a2c2. (1)
-1 = tan(135°) = tan(∠AEC) = tan(∠AED + ∠DEC)
tan(∠AED) + tan(∠DEC)
= ------------------------
1 - tan(∠AED)tan(∠DEC)
(c2/bx) + (a2/bx)
= -------------------
1 - (c2/bx)(a2/bx)
b3x
= ------------ ==>
b2x2 - a2c2
b2x2 + b3x = a2c2. (2)
Combining (1) and (2) gives
b2x2 + b3x = b2y2 + b3y ==>
b2(x + y + b)(x - y) = 0 ==>
x = y ==>
|DE| = |FG|.
QED
|