L(n) = L(n-1) + L(n-2) for n>1
L(0) = 2
L(1) = 1
Here are some more values of L(n) together with the Fibonacci numbers
for comparison:
F(n): 0 1 1 2 3 5 8 13 21 34 55 ...With the above information in background prove the following formulas:
L(n): 2 1 3 4 7 11 18 29 47 76 123 ...
a. F(n-1)+ F(n+1) = L(n)
b. L(n-1) + L(n+1)= 5*F(n)
c. F(n)* L(n) = F(2n)