L(n) = L(n-1) + L(n-2) for n>1

L(0) = 2

L(1) = 1

Here are some more values of L(n) together with the Fibonacci numbers

for comparison:

F(n): 0 1 1 2 3 5 8 13 21 34 55 ...With the above information in background prove the following formulas:

L(n): 2 1 3 4 7 11 18 29 47 76 123 ...

**a. F(n-1)+ F(n+1) = L(n)**

b. L(n-1) + L(n+1)= 5*F(n)

c. F(n)* L(n) = F(2n)

b. L(n-1) + L(n+1)= 5*F(n)

c. F(n)* L(n) = F(2n)