Two rigid hemispheres A and B with uniform volume density p have radii a and b, respectively. Hemisphere B has its flat face glued to a plane. Hemisphere A is then balanced on top of hemisphere B such that their curved surfaces are in contact.

Naturally, A is in equilibrium when its flat face lies parallel to the flat face of B. However, if given a small nudge, A rolls without slipping on the curved surface of B and will either oscillate about the equilibrium position or fall.

The constraint on aa such that A can oscillate is given to be kb>a, where k is some positive real number.

Find the value of k.

Assume that gravity points down, perpendicular to the plane of B's flat face.