All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Odd soccer ball (Posted on 2003-12-04) Difficulty: 5 of 5
A common 6-in.-radius soccer ball contains 12 pentagons arranged so that every pentagon is separated from the next by the same arc length as one of the spherical (great circle segment) sides of the regular hexagons. As the hexagons are regular, this is the same arc length as one of the sides of the pentagons, as the pentagons also border the hexagons.

Calculate the arc length of a pentagon's side of a new soccer ball using the same radius and instead of one line of separation between pentagons, use two lines of separation between pentagons and consider every new line with a distance equal to a side of a pentagon. (See picture)

Note: The endpoints of the mentioned lines intersect with the surface of the soccer ball or sphere.

See The Solution Submitted by Antonio    
Rating: 3.5000 (4 votes)

Comments: ( You must be logged in to post comments.)
  Subject Author Date
re(2): solutionSilverKnight2003-12-04 17:53:38
re: solutionSilverKnight2003-12-04 16:49:07
SolutionsolutionCharlie2003-12-04 16:31:53
SolutionPenny2003-12-04 16:25:37
Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2020 by Animus Pactum Consulting. All rights reserved. Privacy Information