All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Cubic AND Quartic Challenge (Posted on 2004-02-06) Difficulty: 4 of 5
What is the smallest positive integer that is the sum of two different pairs of (non-zero, positive) cubes?

What is the smallest positive integer that is the sum of two different pairs of integers raised to the 4th power? and how did you find it?

In other words what is the smallest x such that:
x = a^4 + b^4 = c^4 + d^4
(where x, a, b, c, and d are all different, non-zero, positive integers)?

Are you able to determine the answer without looking it up on the internet?

See The Solution Submitted by SilverKnight    
Rating: 2.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Hardy's Story | Comment 9 of 15 |
Hardy, after telling the "1729" part of the story (1729 was the cab number Hardy had ridden to visit Ramanujan) then adds "I asked him, naturally, whether he could tell me the solution of the corresponding problem for fourth powers; and he replied, after a moment's thought, that he knew no obvious example, and supposed that the first such number must be very large." I have copied this from Hardy's "Ramanujan" where Hardy is quoting from his own memoir of Ramanujan that he contributed to Ramanujan's "Collected Papers."
Edited on February 6, 2004, 10:31 pm
  Posted by Richard on 2004-02-06 16:17:23
Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (1)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2019 by Animus Pactum Consulting. All rights reserved. Privacy Information