All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Logic
Walking the Roads (Posted on 2004-05-01) Difficulty: 3 of 5
Four roads on a plane, each a straight line, are in general position so that no two are parallel and no three pass through the same point. Along each road walks a traveler at a constant speed. Their speeds, however, may not be the same. It's known that two of the travelers have met each of the other three already.

Prove that the other two have also met each other.

The problem can be generalized to an arbitrary number of roads, which makes it even more striking: Assume that two of the travelers met and have each met all the remaining fellows.

Prove that, if this is the case, the remaining ones all have met each other (ie, if two travelers have met everyone, then everyone has met everyone).

See The Solution Submitted by Sam    
Rating: 4.2857 (7 votes)

Comments: ( You must be logged in to post comments.)
  Subject Author Date
I have two theories...Kim2006-12-22 04:14:39
Walking the Roadsalex2004-05-05 02:58:34
re: Another question for SamDJ2004-05-02 07:58:04
QuestionAnother question for Samlogischer Verstand2004-05-01 19:31:15
re: SolutionPenny2004-05-01 18:39:16
SolutionSolutionOskar2004-05-01 18:09:41
Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2020 by Animus Pactum Consulting. All rights reserved. Privacy Information