All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 The Last Diamond (Posted on 2004-05-25)
A standard, thoroughly shuffled 52-card deck is dealt one at a time to 5 players (players 1 - 5) in standard fashion, until the deck is exhausted.

Using non-brute force methods, show which player is most likely to be dealt the last Diamond in the deck.

 See The Solution Submitted by Brian Smith Rating: 2.8000 (5 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 The actual numbers (spoiler present) | Comment 2 of 5 |

The calculated probability of getting the last diamond on a particular card is specified in the table below by the particular card dealt, and then is summarized in overall probabilities for players 1 through 5:

0.00000000   0.00000000   0.00000000   0.00000000   0.00000000
0.00000000   0.00000000   0.00000000   0.00000000   0.00000000
0.00000000   0.00000000   0.00000000   0.00000000   0.00000000
0.00000000   0.00000000   0.00000001   0.00000003   0.00000008
0.00000020   0.00000046   0.00000102   0.00000213   0.00000426
0.00000819   0.00001521   0.00002738   0.00004791   0.00008172
0.00013621   0.00022223   0.00035557   0.00055876   0.00086353
0.00131407   0.00197110   0.00291723   0.00426365   0.00615860
0.00879801   0.01243856   0.01741399   0.02415488   0.03321296
0.04529041   0.06127525   0.08228391   0.10971188   0.14529412
0.19117647   0.25000000
last diamond
0.24672355   0.32592283   0.10299911   0.13873924   0.18561528

and was obtained by:

DEFDBL A-Z
CLS
prNotThisCum = 1
FOR card = 52 TO 1 STEP -1
pl = (card - 1) MOD 5 + 1
round = (card - 1) \ 5 + 1
prNotThis = (card - 13) / card
prThis = prNotThisCum * 13 / card
prNotThisCum = prNotThisCum * prNotThis
tProb(pl) = tProb(pl) + prThis
LOCATE round + 1, (pl - 1) * 13 + 1
PRINT USING "#.########"; prThis;
NEXT card

FOR pl = 1 TO 5
LOCATE 15, (pl - 1) * 13 + 1
PRINT USING "#.########"; tProb(pl);
NEXT

If the problem had called for, say, the last ace (only 4 in the deck rather than 13), the probabilities would have been:

0.00000000   0.00000000   0.00000000   0.00000369   0.00001478
0.00003694   0.00007388   0.00012928   0.00020685   0.00031028
0.00044325   0.00060947   0.00081263   0.00105642   0.00134454
0.00168067   0.00206852   0.00251177   0.00301413   0.00357928
0.00421092   0.00491273   0.00568843   0.00654169   0.00747622
0.00849571   0.00960384   0.01080432   0.01210084   0.01349709
0.01499677   0.01660356   0.01832117   0.02015329   0.02210361
0.02417582   0.02637363   0.02870071   0.03116077   0.03375750
0.03649460   0.03937575   0.04240465   0.04558500   0.04892049
0.05241481   0.05607166   0.05989473   0.06388771   0.06805430
0.07239819   0.07692308
last ace

0.21534768   0.23261612   0.16926771   0.18371041   0.19905808

 Posted by Charlie on 2004-05-25 08:59:04

 Search: Search body:
Forums (0)