All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 50 - Digit Number II (Posted on 2005-05-13)
I am thinking of a fifty-digit number divisible by 239, of which, each digit is the same, except the ones digit. What is the ones digit?

 See The Solution Submitted by Dustin Rating: 2.8000 (5 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 A systematic approach | Comment 4 of 11 |

The following table shows the mod 239 values of rep-unit numbers up to 20 repetitions of the digit 1:

`1       111      11111     111155     1111117     11111215     1111110       11111111       1111111111      111111111111     1111111111155     11111111111117     111111111111215     11111111111110       111111111111111       11111111111111111      1111111111111111111     11111111111111111155     111111111111111111117     1111111111111111111215     111111111111111111110       111111111111111111111`

Every multiple of 7 repeated 1's has value 0 mod 239.  Ten times zero is zero, so multiplying a 49-digits of all 1's by 10 results in zero mod 239.

If 1's didn't work we'd have to try 2's, 3's, etc.

An alternative method:

Alternatively, with a large precision computation, a 50-digit rep-unit number is shown to be congruent to 1 mod 239.  So changing the repunits to repetitions of any other digit (or just changing the last digit higher) would result in a modular value of 2 through 9, so the only choice is to subtract 1, giving the same answer as described before: 49 1's and a zero.

 Posted by Charlie on 2005-05-13 18:00:09

 Search: Search body:
Forums (0)