All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 divisible by 11? (Posted on 2006-09-04)
I draw numbers 1 through k (k≤10) out of a hat ten times at random, replacing the numbers after drawing them. If I disregard the case where I draw "1" all ten times, explain why the number of possible sequences is divisible by 11. (Result by a calculator is insufficient because anyone can do that easily.)

Now if I change the number '10' to another integer n in the above paragraph, can I still have a similar result; i.e., the total possible number of configurations is divisible by n+1? Does this work for all integers n? If so, prove it; if not, find all integers n it works for.

 No Solution Yet Submitted by Bon Rating: 3.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 re(4): Replace '10' by n | Comment 13 of 17 |
(In reply to re(3): Replace '10' by n by Richard)

I don't see how you get from the problem statement that n+1 must divide k^n-1 for all k=1,2,...,n. I only see that n+1 must divide n^n-1.
 Posted by Bractals on 2006-09-05 00:32:58

 Search: Search body:
Forums (4)