All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Sum Term Reciprocals (Posted on 2008-02-22)
A sequence of real numbers {B(m)} is such that:

B(1) = 1, B(2) = 2, and:

B(m+1) = 1 + B(1)*B(2)*…..*B(m), whenever m ≥ 2

Evaluate:

Limit  (1/B(1) + 1/B(2) + ……+ 1/B(t))
t → ∞

 See The Solution Submitted by K Sengupta Rating: 3.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 computer solution -- not proof (spoiler) | Comment 1 of 3

The series converges rather rapidly, to what seems to be 2:

` i      B(i)                   Pi(B(i))                 partial sum 1               1                         1           1 2               2                         2           1.500000000000000 3               3                         6           1.833333333333333 4               7                        42           1.976190476190476 5              43                      1806           1.999446290143964 6            1807                   3263442           1.999999693575066 7         3263443            10650056950806           1.999999999999906 8  10650056950807           1.1342371305542 x 10^26   2.000000000000000 9  1.1342371305542 x 10^26  1.2864938683279 x 10^52   2.00000000000000010  1.2864938683279 x 10^52  1.6550664732452 x 10^104  2.00000000000000011  1.6550664732452 x 10^104 2.7392450308603 x 10^208  2.000000000000000`

DEFDBL A-Z
total = 1
b = 1
prod = 1
termNo = 1

DO
termNo = termNo + 1
b = 1 + prod
prod = prod * b
total = total + 1 / b
PRINT USING "## ############### ############### #.###############"; termNo; b; prod; total
ct = ct + 1
LOOP

The program quickly crashes on an overflow in prod = prod * b.

 Posted by Charlie on 2008-02-22 11:35:19

 Search: Search body:
Forums (0)