All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Wherefrom thou comest, mylady? (Posted on 2011-08-11)
All four ladies, finalists of a trivia show, agreed among them, prior to facing the MC, to include only one true fact in their statements.
Since each contestant represented a different country, the ladies were requested to address the origin of their fellows.
Alla: Bella is from France and Carla from Canada.
Bella: Della is from Spain and Bella from Canada.
Carla: Alla is from Canada and Carla from France
Della - was not interviewed and therefore said nothing.

Is it possible to determine for each lady, what country she represented?

Comments: ( Back to comment list | You must be logged in to post comments.)
 The answer is... | Comment 2 of 4 |

No, since they come from four countries and only three countries are given names in the puzzle, so we can't identify which is the fourth, though we could probably tell which finalist came from the fourth country.

Below is a table listing how many parts of each two-part statement would be true if the countries of origin were in the order presented. A, B, C and D are Alla, Bella, Carla and Della, while f, s, c and o are France, Spain, Canada and Other.

`ABCD           A  B  Cfsco           1  0  0fsoc           0  0  0fsoo           0  0  0fcso           0  1  0fcos           0  2  0fcoo           0  1  0fosc           0  0  0foso           0  0  0focs           1  1  0foco           1  0  0foos           0  1  0fooc           0  0  0fooo           0  0  0sfco           2  0  0sfoc           1  0  0sfoo           1  0  0scfo           0  1  1scof           0  1  0scoo           0  1  0sofc           0  0  1sofo           0  0  1socf           1  0  0soco           1  0  0soof           0  0  0sooc           0  0  0sooo           0  0  0cfso           1  0  1cfos           1  1  1cfoo           1  0  1csfo           0  0  2csof           0  0  1csoo           0  0  1cofs           0  1  2cofo           0  0  2cosf           0  0  1coso           0  0  1coof           0  0  1coos           0  1  1cooo           0  0  1ofsc           1  0  0ofso           1  0  0ofcs           2  1  0ofco           2  0  0ofos           1  1  0ofoc           1  0  0ofoo           1  0  0osfc           0  0  1osfo           0  0  1oscf           1  0  0osco           1  0  0osof           0  0  0osoc           0  0  0osoo           0  0  0ocfs           0  2  1ocfo           0  1  1ocsf           0  1  0ocso           0  1  0ocof           0  1  0ocos           0  2  0ocoo           0  1  0oofs           0  1  1oofc           0  0  1oofo           0  0  1oosf           0  0  0oosc           0  0  0ooso           0  0  0oocf           1  0  0oocs           1  1  0ooco           1  0  0ooof           0  0  0ooos           0  1  0oooc           0  0  0oooo           0  0  0`

Only the line cfos has three 1's, indicating that each finalist made one true half-statement. So if "only one true fact" is interpreted as "exactly one true fact", then Alla is from Canada, Bella is from France, Carla is from a country not named in the puzzle and Della is from Spain.

CLS
orig\$ = "fsco"
FOR alla = 1 TO 4
IF alla = 4 OR used(alla) = 0 THEN
used(alla) = 1
FOR bella = 1 TO 4
IF bella = 4 OR used(bella) = 0 THEN
used(bella) = 1
FOR carla = 1 TO 4
IF carla = 4 OR used(carla) = 0 THEN
used(carla) = 1
FOR della = 1 TO 4
IF della = 4 OR used(della) = 0 THEN
used(della) = 1

PRINT MID\$(orig\$, alla, 1) + MID\$(orig\$, bella, 1) + MID\$(orig\$, carla, 1) + MID\$(orig\$, della, 1),
t1 = ABS((bella = 1) + (carla = 3))
t2 = ABS((della = 2) + (bella = 3))
t3 = ABS((alla = 3) + (carla = 1))
PRINT t1; t2; t3
ct = ct + 1
IF ct MOD 40 = 0 THEN DO: LOOP UNTIL INKEY\$ > "": PRINT

used(della) = 0
END IF
NEXT
used(carla) = 0
END IF
NEXT
used(bella) = 0
END IF
NEXT
used(alla) = 0
END IF
NEXT
PRINT ct

 Posted by Charlie on 2011-08-11 17:46:59

 Search: Search body:
Forums (0)
Random Problem
Site Statistics
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox: