All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Locus of Midpoints (Posted on 2012-07-28) Difficulty: 4 of 5
   

Let P be a fixed point on side BC of ΔABC and define set PAIRS by

   { (X,Y) | X on side AC, Y on side AB, and ∠PXC = ∠PYB }.

Prove that the midpoints of line segments XY for all pairs (X,Y) ∈ PAIRS lie on a straight line.

Note: For this problem, a point on a side of ΔABC excludes the vertices.

   

  Submitted by Bractals    
No Rating
Solution: (Hide)
We will be using the following theorem by Stewart (ST)
in our proof:

   If P is a point on side MN of ΔLMN, then

   |MN|•|LP|2 = |MP|•|LN|2 + |PN|•|LM|2 - |MN|•|MP|•|PN|

Let Q and R be the perpendicular projections of P onto sides AC and AB
respectively. Clearly, ARPQ is a cyclic quadrilateral with circumcircle Γ.

Let (X,Y)  be an arbitrary pair from PAIRS with X and Y inside Γ and midpoint M.

   Applying (ST) to cevian QY in ΔQRA,

   |AR|•|QY|2 = |AY|•|QR|2 + |RY|•|AQ|2 - |AR|•|AY|•|RY|
              = (|AR| - |RY|)•|QR|2 + |RY|•|AQ|2 - |AR|•(|AR| - |RY|)•|RY|
              = |AR|•|QR|2 - |RY|•|QR|2 + |RY|•|AQ|2 - |RY|•|AR|2 + |AR|•|RY|2
              = |RY|•[|AQ|2 - |AR|2 - |QR|2] + |AR|•[|QR|2 + |RY|2]
              = |RY|•[-2•|AR|•|QR|•cos(∠ARQ)] + |AR|•[|QR|2 + |RY|2]
              = |AR|•[-2•|QR|•|RY|•cos(∠ARQ) + |QR|2 + |RY|2]
              = |AR|•[-2•|QR|•|RY|•cos(∠APQ) + |QR|2 + |RY|2]
              = |AR|•[-2•|QR|•|RY|•(|PQ|/|AP|) + |QR|2 + |RY|2]

   |QY|2 = -2•|QR|•|RY|•(|PQ|/|AP|) + |QR|2 + |RY|2                           (1)

Swapping letters Q with R and X with Y in the above argument gives,

   |RX|2 = -2•|QR|•|QX|•(|PR|/|AP|) + |QR|2 + |QX|2                           (2)

Since ∠PXQ = ∠PXC = ∠PYB = ∠PYR,

   |PQ|/|QX| = tan(∠PXQ) = tan(∠PYR) = |PR|/|RY|                             (3)

Combining (1), (2), and (3) gives,

   |QX|2 + |QY|2 = |RX|2 + |RY|2                                              (4)

If points X and Y are outside Γ a similar argument gives
the same result as (4). 

Applying (ST) to cevian QM in ΔQXY,

   |XY|•|QM|2 = |MX|•|QY|2 + |MY|•|QX|2 - |XY|•|MX|•|MY|

                or

   |QM|2 = (|QY|2 + |QX|2)/2 - |MX|•|MY|                                      (5)


Applying (ST) to cevian RM in ΔRXY,

   |XY|•|RM|2 = |MX|•|RY|2 + |MY|•|RX|2 - |XY|•|MX|•|MY|

                or

   |RM|2 = (|RY|2 + |RX|2)/2 - |MX|•|MY|                                      (6)

Combining (4), (5), and (6) gives,

   |QM| = |RM|

Therefore, the midpoint M lies on the perpendicular bisector of QR.

QED

Comments: ( You must be logged in to post comments.)
  Subject Author Date
There are no comments yet.
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (24)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information