All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Perpendicular (Posted on 2012-12-26)
Let ABC be a triangle and D the foot of the altitude from A. Let E and F lie on a line passing through D such that AE is perpendicular to BE, AF is perpendicular to CF, and E and F are different from D. Let M and N be the midpoints of the segments BC and EF, respectively. Prove that AN is perpendicular to NM.

 No Solution Yet Submitted by Danish Ahmed Khan Rating: 3.3333 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 Analytic Solution | Comment 3 of 5 |
`Let a, b, c be real numbers greater than or equalto zero. Apply a coordinate system to the trianglesuch that A = (0,2a), B = (-2b,0), C = (2c,0),D = (0,0), and M = (c-b,0).For AEB to be a right angle, point E = (x_e,y_e)must lie on the circle with diameter AB,   (x + b)^2 + (y - a)^2 = a^2 + b^2                   or         x^2 + y^2 = 2(ay - bx)              (1)For AFC to be a right angle, point F = (x_f,y_f)must lie on the circle with diameter AC,   (x - c)^2 + (y - a)^2 = a^2 + c^2                   or         x^2 + y^2 = 2(ay + cx)              (2)For ANM to be a right angle, point N = (x_n,y_n)must lie on the circle with diameter AM,   (x-[c-b]/2)^2 + (y-a)^2 = a^2 + ([c-b]/2)^2                   or         x^2 + y^2 = 2ay + (c-b)x            (3)For the line through D we have     y = mx,                                  (4)        where         -c/a < m < b/aFor E to be on the line through D it mustsatisfy both (1) and (4),    x_e = 2(am - b)/(1 + m^2)                (5)For F to be on the line through D it mustsatisfy both (2) and (4),    x_f = 2(am + c)/(1 + m^2)                (6)For N to be on the line through D it mustsatisfy both (3) and (4),    x_n = (2am + c - b)/(1 + m^2)            (7)For N to be the midpoint of line segment EF,it must satisfy the following:    x_n = (x_e + x_f)/2                      (8)which it does.QED`

 Posted by Bractals on 2012-12-27 02:40:08

 Search: Search body:
Forums (0)