All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers > Sequences
Consecutive Contemplation II (Posted on 2013-02-10) Difficulty: 3 of 5
Each of n positive integers x+100, x+200, ..., x+100*n, which are n consecutive terms of an arithmetic sequence with common difference of 100, is expressible as the sum of squares of two distinct positive integers.

Determine the maximum value of n and prove that no higher value of n is possible.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( You must be logged in to post comments.)
  Subject Author Date
An exampleJer2013-02-11 14:58:35
A guessJer2013-02-11 14:49:11
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (1)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information