Home > Numbers > Sequences
Consecutive Contemplation II (Posted on 2013-02-10) |
|
Each of n positive integers x+100, x+200, ..., x+100*n, which are n consecutive terms of an arithmetic sequence with common difference of 100, is expressible as the sum of squares of two distinct positive integers.
Determine the maximum value of n and prove that no higher value of n is possible.
Comments: (
You must be logged in to post comments.)
|
|
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|