All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Algorithms
Ceiling and Floor Formulation (Posted on 2013-03-04) Difficulty: 3 of 5
Formulate an algorithm for fast evaluation of:
Σj=1,...,n2 (floor (√j) + ceil (√j)), where n is a positive integer.

** ceil(x) is the least integer ≥ x and, floor(x) is the greatest integer ≤ x

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re: Solution? | Comment 3 of 6 |
(In reply to Solution? by Jer)

The formula you give shows S(1) as being 1, while it is actually 2, as both the floor and ceiling of sqrt(1) are 1.

For n=2, we're working on the square roots of 1, 2, 3 and 4. Adding the respective floors and ceilings we get 1 + 1 + 1 + 2 + 1 + 2 + 2 + 2 = 12. Your formula gives (32-2)/3 = 30/3 = 10.

n       direct sum   (4*n^3+2*n)/3    (4*n^3-n)/3
1             2             2             1
2             12            12            10
3             38            38            35
4             88            88            84
5             170           170           165
6             292           292           286
7             462           462           455
8             688           688           680
9             978           978           969
10            1340          1340          1330
11            1782          1782          1771
12            2312          2312          2300
13            2938          2938          2925
14            3668          3668          3654
15            4510          4510          4495
16            5472          5472          5456
17            6562          6562          6545

  Posted by Charlie on 2013-03-04 15:40:27
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information