Let A and B each be random real numbers chosen from the uniform interval (0,1).
Call Z the tenths place digit of A^{B}.
Find the probability distribution of Z.
(In reply to
table of numeric integration by Charlie)
BTW, that's
P(digit >= n) = 1  Integ{0 to 1} e^(ln(digit/10)/x) dx
Since that's >=, each lower digit individually is found by subtracting from the previous. The integration doesn't work out when seeking digit zero, but that's known to be 1; that is, the integration is zero and, subtracted from 1 is 1.

Posted by Charlie
on 20141030 08:47:54 