All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Approximating radicals (Posted on 2015-02-17) Difficulty: 3 of 5
You can approximate irrational square roots with rational numbers using linear interpolation between the integers as follows:

√1 = 1
√2 ≈ 4/3
√3 ≈ 5/3
√4 = 2
√5 ≈ 11/5
√6 ≈ 12/5
√7 ≈ 13/5
√8 ≈ 14/5
√9 = 3
etc...

How good an approximation is this?
For large numbers, might the previous or next fraction be a better approximation?

No Solution Yet Submitted by Jer    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts discussion | Comment 1 of 4
I can only compare against a known method of approximating irrationals with rationals: continued fractions, the values of which can most easily be found using a variant of Euclid's algorithm for finding GCD: start with the number a 1 as dividend and divisor respectively. The quotient is used in a side panel to determine how many of each of the first two numbers (the number in question and 1) go into making a tinier number, and the remainder becomes the new divisor while the old divisor becomes the dividend.

Applied to the square root of 2:

1.4142135623731         1       0
1                       0       1
.4142135623731          1      -1
.1715728752538001       -2      3
.07106781186549976      5      -7
.02943725152280058      -12    17
.0121933088198986       29    -41

The quotient in each case is used to multiply the previous values in column 2 and in column 3 to subtract from the value before that. So the quotient of .4142135623731 divided by .1715728752538001 is 2, so in column 2 the value 5 is derived by 1 - 2*(-2) and in column 3, the value -7 is derived by -1 - 2*3.

The results of this process are shown below, and, for example, 7/5 is a better approximation of sqrt(2) than is 4/3. For sqrt(3), 7/4 is a better approximation than 5/3. For sqrt(5), 9/4 is better than 11/5. For sqrt(6), 22/9 is closer than 12/5; for sqrt(7), 8/3 beats 13/5; for sqrt(8), 17/6 beats 14/5; etc.  Each of these is using the same number or fewer digits than the interpolation method.

The below results don't show the successive remainders, but the quotient used in each case is shown off to the right. The absolute value of the two columns is shown as they represent the numerator and denominator of the new approximation.

1 1
      1      1          1
2 1.4142135623731
      1      1          1
      3      2          2
      7      5          2
     17     12          2
     41     29          2
     99     70          2
    239    169          2
    577    408          2
3 1.73205080756888
      1      1          1
      2      1          1
      5      3          2
      7      4          1
     19     11          2
     26     15          1
     71     41          2
     97     56          1
4 2
      2      1          2
5 2.23606797749979
      2      1          2
      9      4          4
     38     17          4
    161     72          4
    682    305          4
   2889   1292          4
  12238   5473          4
  51841  23184          4
6 2.44948974278318
      2      1          2
      5      2          2
     22      9          4
     49     20          2
    218     89          4
    485    198          2
   2158    881          4
   4801   1960          2
7 2.64575131106459
      2      1          2
      3      1          1
      5      2          1
      8      3          1
     37     14          4
     45     17          1
     82     31          1
    127     48          1
8 2.82842712474619
      2      1          2
      3      1          1
     14      5          4
     17      6          1
     82     29          4
     99     35          1
    478    169          4
    577    204          1
9 3
      3      1          3
10 3.16227766016838
      3      1          3
     19      6          6
    117     37          6
    721    228          6
   4443   1405          6
  27379   8658          6
 168717  53353          6
1039681 328776          6



from

DefDbl A-Z
Dim a(3), b(3), crlf$
Function mform$(x, t$)
  f$ = Format$(x, t$)
  If Len(f$) < Len(t$) Then f$ = Space$(Len(t$) - Len(f$)) & f$
  mform$ = f$
End Function

Private Sub Form_Load()
 Text1.Text = ""
 crlf$ = Chr(13) + Chr(10)
 Form1.Visible = True
 
  For n = 1 To 10
        x = Sqr(n)
        Text1.Text = Text1.Text & n & Str(x) & crlf
        dvd = x: dvr = 1
        a(1) = 1: b(1) = 0
        a(2) = 0: b(2) = 1
        
        For gen = 1 To 8
          If dvr = 0 Then Exit For
          q = Int(dvd / dvr)
          r = dvd - dvr * q
          a(3) = a(1) - q * a(2): b(3) = b(1) - q * b(2)
          a(1) = a(2): a(2) = a(3)
          b(1) = b(2): b(2) = b(3)
          dvd = dvr: dvr = r
          Text1.Text = Text1.Text & mform(Abs(b(3)), "#######") & mform(Abs(a(3)), "#######") & "          " & q & crlf
        Next gen
        Text1.Text = Text1.Text & crlf
  Next
  Text1.Text = Text1.Text & "done"
  DoEvents

End Sub


  Posted by Charlie on 2015-02-17 16:31:49
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (24)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information