Working from the right, the problem is not quite as bad as working from the left, but at each stage in choosing a multiplier, you are presented with two choices of a digit. For example, here's one where the only choice of 6 was at the rightmost position; from there on only 1 was chosen to produce a 6 in the product:
916 69211003172937520251928576
9116 688785485725434972288843776
93116 7035646038702238139496267776
943116 71259830205729413045761867776
9243116 698390099130818297424590667776
90243116 6818577060929878494374606667776
900243116 68020446678920480463874766667776
9400243116 710262288349192229526530766667776
90400243116 6830449250148252426476546766667776
910400243116 68787897505397997630168066766667776
9010400243116 680806593685304017325169666766667776
92010400243116 6952109282936192861113457666766667776
912010400243116 68909557538185938064804977666766667776
where the left number is the multiple and the right is the product up to that point as we build the multiplier from right to left.
Another set of choices looks like this:
66 4986819005910345345662976
866 65433109986641804080971776
6866 518780292342127744595787776
86866 6563409390415273618126667776
586866 44342341253372435327694667776
7586866 573247387334772699261646667776
77586866 5862297848148775338601166667776
677586866 51197016083697369390082766667776
9677586866 731217789616926280162306766667776
69677586866 5264689613171785685310466766667776
769677586866 58155194221311812078705666766667776
7769677586866 587060240302712076012657666766667776
77769677586866 5876110701116714715352177666766667776
but the resulting set of digits in the product is still the same.
In fact the same set is produced by randomly choosing which of the two should be used at each step:
916 69211003172937520251928576
616 46543644055163223226187776
90616 6846751379387452330948427776
930616 70315356909155484003022667776
930616 70315356909155484003022667776
94930616 7172754547145101885401806667776
904930616 68374624165135703854901966667776
704930616 53263051419952839171074766667776
7704930616 582168097501353103105026766667776
97704930616 7382375832833642210827266766667776
9497704930616 717626294856428282350705666766667776
91497704930616 6913371120381402802719857666766667776
911497704930616 68870819375631148006411377666766667776
So what if we continue?
At the end we get:
60323785355017521615381548200199638897190843742219575360695242527202826527017533487543311497704930616
which multiple of 2^76 is
4557936353285720092883266666766767776667766777666667776766677767667676666776766667777767666677766776777777777777666766667776
and if we take the last 76 digits of this, the result is indeed divisible by 2^76, and so is the answer:
6667776766677767667676666776766667777767666677766776777777777777666766667776
Edited on March 14, 2004, 1:49 pm
Edited on March 14, 2004, 1:53 pm
|
Posted by Charlie
on 2004-03-14 13:48:25 |