Do the three hands on an analog clock (hours, minutes, seconds) ever divide the face of the clock into three equal segments, i.e. 120 degrees between each hand?
As the relative positions of the hour and minute hand repeat in a cycle of 12/11 hours, and the hour and minute hands are together at 12:00, they will meet each other at increments of 120 degrees (including zero) every 12/33 of an hour. The following program lists all such times, with the angular positions of the hour hand, minute hand and second hand, and the differences between each pair of hands, assuming an ideal clock with smoothly moving hands and no play in the gears:
DEFDBL A-Z
FOR t = 0 TO 12 STEP 12 / 33
h = INT(t)
m = (t - h) * 60
s = (m - INT(m)) * 60
hh = 360 * t / 12
mh = 360 * m / 60
sh = 360 * s / 60
PRINT USING "##:##.##"; h; m;
PRINT USING "#####.####"; hh; mh; sh; hh - mh; mh - sh; sh - hh
NEXT t
The resulting table:
0: 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0:21.82 10.9091 130.9091 294.5455 -120.0000 -163.6364 283.6364
0:43.64 21.8182 261.8182 229.0909 -240.0000 32.7273 207.2727
1: 5.45 32.7273 32.7273 163.6364 0.0000 -130.9091 130.9091
1:27.27 43.6364 163.6364 98.1818 -120.0000 65.4545 54.5455
1:49.09 54.5455 294.5455 32.7273 -240.0000 261.8182 -21.8182
2:10.91 65.4545 65.4545 327.2727 -0.0000 -261.8182 261.8182
2:32.73 76.3636 196.3636 261.8182 -120.0000 -65.4545 185.4545
2:54.55 87.2727 327.2727 196.3636 -240.0000 130.9091 109.0909
3:16.36 98.1818 98.1818 130.9091 -0.0000 -32.7273 32.7273
3:38.18 109.0909 229.0909 65.4545 -120.0000 163.6364 -43.6364
4: 0.00 120.0000 0.0000 0.0000 120.0000 -0.0000 -120.0000
4:21.82 130.9091 130.9091 294.5455 -0.0000 -163.6364 163.6364
4:43.64 141.8182 261.8182 229.0909 -120.0000 32.7273 87.2727
5: 5.45 152.7273 32.7273 163.6364 120.0000 -130.9091 10.9091
5:27.27 163.6364 163.6364 98.1818 0.0000 65.4545 -65.4545
5:49.09 174.5455 294.5455 32.7273 -120.0000 261.8182 -141.8182
6:10.91 185.4545 65.4545 327.2727 120.0000 -261.8182 141.8182
6:32.73 196.3636 196.3636 261.8182 0.0000 -65.4545 65.4545
6:54.55 207.2727 327.2727 196.3636 -120.0000 130.9091 -10.9091
7:16.36 218.1818 98.1818 130.9091 120.0000 -32.7273 -87.2727
7:38.18 229.0909 229.0909 65.4545 0.0000 163.6364 -163.6364
7:60.00 240.0000 360.0000 360.0000 -120.0000 0.0000 120.0000
8:21.82 250.9091 130.9091 294.5455 120.0000 -163.6364 43.6364
8:43.64 261.8182 261.8182 229.0909 0.0000 32.7273 -32.7273
9: 5.45 272.7273 32.7273 163.6364 240.0000 -130.9091 -109.0909
9:27.27 283.6364 163.6364 98.1818 120.0000 65.4545 -185.4545
9:49.09 294.5455 294.5455 32.7273 0.0000 261.8182 -261.8182
10:10.91 305.4545 65.4545 327.2727 240.0000 -261.8182 21.8182
10:32.73 316.3636 196.3636 261.8182 120.0000 -65.4545 -54.5455
10:54.55 327.2727 327.2727 196.3636 0.0000 130.9091 -130.9091
11:16.36 338.1818 98.1818 130.9091 240.0000 -32.7273 -207.2727
11:38.18 349.0909 229.0909 65.4545 120.0000 163.6364 -283.6364
11:60.00 360.0000 360.0000 360.0000 0.0000 0.0000 -0.0000
shows no row in which all of the last three columns show +/-120 or +/- 240, so the answer is no.
(Please forgive the 11:60 as a reference to 12:00, etc. as the internal representation of numbers as binary leads to truncation so that the hours were just short of 12 and the integer part fell to 11. Likewise 7:60 for 8:00.)
|
Posted by Charlie
on 2004-07-05 11:00:30 |