You have a deck of 52 cards - for convenience, number them 1 through 52. You cut the cards into two equal halves and shuffle them perfectly. That is, the cards were in the order
1,2,3,...,52
and now they are
1,27,2,28,...,26,52. Let's call this a perfect in-shuffle.
If you repeat this in-shuffling process, how many in-shuffles will it take for the deck to return to its initial ordering (taking for granted that the cards will eventually do so)?
________________________
How does the solution change if you have a deck of 64 cards, or 10, or in general, n cards? For odd integer values of n, in-shuffling will take 1,2,3,...,n to 1,(n+3)/2,2,(n+5)/2,...,n,(n+1)/2. For example, when n=5, the first in-shuffle yields 1,4,2,5,3.
i decided to write it all out, i mean i really had nothing better to do.
1st shuffle:
1 27 2 28 3 29 4 30 5 31 6 32 7 33 8 34 9 35 10 36 11 37 12 38 13 39 14 40 15 41 16 42 17 43 18 44 19 45 20 46 21 47 22 48 23 49 24 50 25 51 26 52.
2nd shuffle:
1 14 27 40 2 15 28 41 3 16 29 42 4 17 30 43 5 18 31 44 6 19 32 45 7 20 33 46 8 21 34 47 9 22 35 48 10 23 36 49 11 24 37 50 12 25 38 51 13 26 39 52.
3rd shuffle:
1 33 14 46 27 8 40 21 2 34 15 47 28 9 41 22 3 35 16 48 29 10 42 23 4 36 17 49 30 11 43 24 5 37 18 50 31 12 44 25 6 38 19 51 32 13 45 26 7 39 20 52.
4th shuffle:
1 17 33 49 14 30 46 11 27 43 8 24 40 5 21 37 2 18 34 50 15 31 47 12 28 44 9 25 41 6 22 38 3 19 35 51 16 32 48 13 29 45 10 26 42 7 23 39 4 20 36 52.
5th shuffle:
1 9 17 25 33 41 49 6 14 22 30 38 46 3 11 19 27 35 43 51 8 16 24 32 40 48 5 13 21 29 37 45 2 10 18 26 34 42 50 7 15 23 31 39 47 4 12 20 28 36 44 52.
6th shuffle:
1 5 9 13 17 21 25 29 33 37 41 45 49 2 6 10 14 18 22 26 30 34 38 42 46 50 3 7 11 15 19 23 27 31 35 39 43 47 51 4 8 12 16 20 24 28 32 36 40 44 48 52.
7th shuffle:
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52.
8th shuffle:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52.
woohoo so the answer is 8 shuffles!
um. as for the second prat of the question. i'm not sure.
|
Posted by Rachel
on 2004-07-13 03:28:00 |