All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Fibonacci sums (Posted on 2004-07-15) Difficulty: 3 of 5
The Fibonacci series 0, 1, 1, 2, 3, 5, 8, 13, in which each number is the sum of the two previous, is defined as F(0)=0, F(1)=1, and F(n)=F(n-1)+F(n-2) for n>1.

What is the sum of F(0)+F(1)+F(2)+...+F(k)?
What is the sum of F(0)^2+F(1)^2+F(2)^2+...+F(k)^2?

See The Solution Submitted by Federico Kereki    
Rating: 3.7143 (7 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Inelegant solution | Comment 1 of 13

From simple observation, the sum of F(0) thru F(k) = F(k+2) - 1

The sum of F(0)^2 thru F(k)^2 seems to be F(k+1)^2 - F(k), plus 1 if k is even and minus 1 if k is odd.  My bet is there is a more elegant solution to this part.


  Posted by Bryan on 2004-07-15 14:53:26
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information