Suppose that I drew an infinite number of disjoint closed curves in the plane (such as circles, squares, etc.). Suppose that I then tell you that there is one curve for each positive real number.
You would not have too much trouble believing my assertions at this point. For example, I could have drawn all circles with center at the origin. They are all disjoint, and for each positive real number x, there is a corresponding circle - namely, the circle of radius x.
But suppose that I also tell you that all the curves I drew were figure eights. Can you believe my assertions now?
(A figure eight is a curve in the plane obtained from the basic "8" shape by any combination of translation, rotation, expansion, or shrinking.)