All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Biased Coins (Posted on 2005-02-17) Difficulty: 4 of 5
Call a biased coin a p-coin if it comes up heads with probability p and tails with probability 1-p. We say that a p-coin simulates a q-coin if by flipping a p-coin repeatedly (some fixed finite number of times) one can simulate the behavior of a q-coin.

For example, a fair coin can be used to simulate a 3/4-coin by using two flips and defining a pseudo-head to be any two-flip sequence with at least one real head. The chance of a pseudo-head coming up is 3/4, so we have simulated a 3/4-coin.

1. Find a rational value p such that a p-coin can simulate both a 1/2-coin and a 1/3-coin, or prove that no such value exists.

2. Find an irrational value p such that a p-coin can simulate both a 1/2-coin and a 1/3-coin, or prove that no such value exists.

See The Solution Submitted by David Shin    
Rating: 4.0000 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Simple solution | Comment 1 of 9
You can always simulate a ½-coin using a p-coin: toss it two times in a row, and if you get Heads-Tails, call it "Heads"; Tails-Heads, call it "Tails", and in other cases, toss again.


Thus, the first problem is solved by taking a 1/3-coin, and the second one with a 1/√3-coin -- toss it twice in a row, and if you get two heads, call it "Heads", and "Tails" otherwise.
  Posted by Old Original Oskar! on 2005-02-18 10:51:17

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information