All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
The poisonous wine (Posted on 2005-02-26) Difficulty: 3 of 5
There are 1000 bottles of wine and you know that there is exactly one of them that is poisonous, and will kill the drinker in 7 days. (To be precise, it will take randomly from 7 days to 7 days 23 hr 59 min 59 sec.) Now you have 10 testers who are willing to risk their lives and test-drink those wines. What is the smallest number of days you need to figure out which bottle contains the poisonous wine? In addition, under this strategy, what is the maximum and minimum number of deaths? The extension to this problem is, how will your strategy change if you only have 9 testers?

See The Solution Submitted by Bon    
Rating: 4.0000 (7 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
A final extension (no spoiler) | Comment 13 of 21 |
To round this puzzle off nicely, find an equation for the maximum number of bottles (M), one of which is poisonous, which can be tested by some number of testers (T). Assume the posion kills a tester N days after ingestion.

For the more ambitious, find the more general equation when B bottles are poisonous.
  Posted by vertigo on 2005-02-27 16:56:03
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information