All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Passing Through (Posted on 2005-04-06) Difficulty: 3 of 5
You are standing in the very corner of a 10 X 10 grid of dots. How many different ways are there to get to the opposite corner of the grid? You must travel through every node once, and only once. You cannot travel diagonally, and you may not go outside of the overall perimeter.

See The Solution Submitted by Juggler    
Rating: 3.2500 (4 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution | Comment 18 of 28 |

I give an example for you to visualise that there are numerous ways to move from one very corner to another end opposite:

     1   2   3   4   5   6    7   8   9    10

1   D   L   L   S   R   D   R   D    R    D

2   R   R   R   R   U   R   U   R    U    D

3   D   L   L    D   L   D   L    D     L   D

4   R   D   U   L   U    L   U    L     U    L

5   D   L   R   R    R   R   R    R    R    D

6   R   R   U   D    L   D   L    D    L    D

7   D   L   L    D    U   D   U   D   U     D

8   R   D   U   D    U   D   U    D   U    D

9   D    L   U    L     U   D   U   D   U    D

10  R   R    R    F    U   L   U    L    U    L  

Again each letter represent each grid of dot.  S = standing point; R = move to the right from one grid of dot to another. L =move to the left from one grid of dot to the nearer.  U = move upward from one grid of dot to another.  D = move downward from one grid of dot to another; F = finishing point.

The above movement commences from to top corner whereby the letter, S, is indicated.  It begins with the movement to the left 2 steps & after that.....


  Posted by Jonathan Chang on 2005-04-19 15:04:18
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information