All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Trisected Triangle (Posted on 2006-02-03) Difficulty: 3 of 5
A right triangle PQR, has its hypotenuse, PR, trisected at points A and B. Two lines, QA and QB are then drawn and k is such that QA^2 + QB^2 = (PR^2) * k. Find the value of k.

No Solution Yet Submitted by Chris, PhD    
Rating: 4.5000 (4 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution No Subject | Comment 9 of 14 |

PA = AB = BR = 1/3 PR

We will draw a perpendicular from Q on PR and name the point C where it meets PR.

Now

QA^2 = CA^2 + QC^2

QB^2 = CB^2 + QC^2

QA^2 + QB^2 = CA^2 + 2*QC^2 + CB^2

QC^2 = QP^2 - PC^2

QC^2 = QR^2 - CR^2

QA^2 + QB^2 = QP^2 - PC^2 + QR^2 - CR^2 + CA^2 + CB^2

Since

QP^2 + QR^2 = PR^2

QA^2 + QB^2 = PR^2 - (PA - CA)^2 - (CA + AR)^2 + CA^2 + (CA + AB)^2

QA^2 + QB^2 = PR^2 - PA^2 - CA^2 + 2*PA*CA + - CA^2 - AR^2  - 2*CA*AR + CA^2 + CA^2 + AB^2 + 2*CA*AB

QA^2 + QB^2 = PR^2 - (1/9 PR^2 + 4/9 PR^2 - 1/9 PR^2) + 2*( CA (PA+ AB - AR)

Since

PA + AB = PB = CR

Therefore

QA^2 + QB^2 = PR^2 - 4/9 PR^2

QA^2 + QB^2 = 5/9 PR^2

Therefore,

k=5/9


  Posted by akash on 2006-02-06 11:41:06
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information