All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Factorial Sequence II (Posted on 2006-03-10) Difficulty: 3 of 5
To go along with Factorial Sequence, I present Factorial Sequence II. You can approximate the length of x! by multiplying x*log(x/e).

Now, using this knowledge, find the value at which the length of x! is equal to 1,000,000,000?

See The Solution Submitted by Justin    
Rating: 4.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 4

The idea is to solve x*log(x/e) = 1,000,000,000.

If x is 130202808,  x*log(x/e) is 999999994.4440194, while if x is 130202809,  x*log(x/e) is 1000000002.55864. So the formula gives no answer that rounds exactly to 1,000,000,000.

Using a more precise formula,

log (x!) =  log(x) * (x + .5) +  (-x + 1/(12*x) - 1/(360*x^3) + 1/(1260*x^5)) / ln(10) + log(2*pi)/2

the values of x and len(x!) actually come out to:

   x                 len(x!)
130202808     999999999
130202809     1000000008

so again there's no value that produces exactly length 1,000,000,000.

program used:

DECLARE FUNCTION log10# (x#)
DECLARE FUNCTION lxf# (x#)
CONST pi# = 3.14159265358979# + 3.24D-15
CONST twopi# = 2# * pi#
CONST e# = 2.71828182845904# + 5.24D-15
CONST loge10# = 2.30258509299404# + 5.68D-15
CONST einv# = 1# / e#
CONST radDeg# = 180# / pi#

CLS


DEFDBL A-Z

CLS
i = 40
f = 1.1

DO
  DO
   i = INT(i * f)
   l = i * LOG(i / e#) / loge10#
   a$ = INKEY$
  LOOP UNTIL l >= 1000000000 OR a$ = CHR$(27)
  IF a$ = CHR$(27) THEN EXIT DO
  PRINT i, l, l / i
  f = 1 - (f - 1) / 2
  DO
   i = INT(i * f)
   l = i * LOG(i / e#) / loge10#
   a$ = INKEY$
  LOOP UNTIL l < 1000000000 OR a$ = CHR$(27)
  IF a$ = CHR$(27) THEN EXIT DO
  f = 1 + ABS(f - 1) / 2
  PRINT i, l, l / i
LOOP UNTIL INKEY$ = CHR$(27) OR a$ = CHR$(27)
PRINT
j = i
FOR i = j - 3 TO j + 3
   l = i * LOG(i / e#) / loge10#
   PRINT i, l, l / i
NEXT

DO: LOOP UNTIL INKEY$ = CHR$(27)

i = 40
f = 1.1

DO
  DO
   i = INT(i * f)
   l = INT(lxf#(i) + 1)
   a$ = INKEY$
  LOOP UNTIL l >= 1000000000 OR a$ = CHR$(27)
  IF a$ = CHR$(27) THEN EXIT DO
  PRINT i, l, l / i
  f = 1 - (f - 1) / 2
  DO
   i = INT(i * f)
   l = INT(lxf#(i) + 1)
   a$ = INKEY$
  LOOP UNTIL l < 1000000000 OR a$ = CHR$(27)
  IF a$ = CHR$(27) THEN EXIT DO
  f = 1 + ABS(f - 1) / 2
  PRINT i, l, l / i
LOOP UNTIL INKEY$ = CHR$(27) OR a$ = CHR$(27)
PRINT
j = i
FOR i = j - 3 TO j + 3
   l = INT(lxf#(i) + 1)
   PRINT i, l, l / i
NEXT

DO: LOOP UNTIL INKEY$ = CHR$(27)

END

DEFDBL A-Z
FUNCTION log10# (x)
   log10# = LOG(x) / loge10#
END FUNCTION

FUNCTION lxf# (x#)
  IF x# < 171 THEN
    fact# = 1
    IF x# > 1 THEN
      FOR i = 2 TO x#
       fact# = fact# * i
      NEXT
    END IF
    lo# = log10#(fact#)
  ELSE
    lo# = log10#(x#) * (x# + .5#)
    lo# = lo# + (-x# + 1# / (12# * x#) - 1# / (360# * x# * x# * x#) + 1# / (1260# * x# * x# * x# * x# * x#)) / loge10#
    lo# = lo# + log10#(twopi#) / 2#
  END IF
  lxf# = lo#
END FUNCTION

 


  Posted by Charlie on 2006-03-10 13:06:06
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information