Find all integers p and q that satisfy p³+27pq+2009=q³.
using the following mathematica code I've varified that
|p|>1000 and |q|>1000
Fnc[x_,y_]:=x^3+27*x*y+2009-y^3;
Lmt:=1000;
Sols:={};
For[a=0,a<=Lmt,a++,
For[b=0,b<=Lmt,b++,
If[Fnc[a,b]==0,
Sols=Append[Sols,{a,b}];
];
If[Fnc[a,-b]==0,
Sols=Append[Sols,{a,-b}];
];
If[Fnc[-a,b]==0,
Sols=Append[Sols,{-a,b}];
];
If[Fnc[-a,-b]==0,
Sols=Append[Sols,{-a,-b}];
];
];
];
Sols
also if you consider solutions of the form |x|=|y| we can show that (-7,7) is the only one
if x=y we get
27x^2+2009=0
which has no real solutions
if x=-y we get
2x^3-27x^2+2009=0
(x+7)(2x^2-41x+287)=0
first factor gives Larry's solution of (-7,7) and the second factor gives no integer solutions.
Thus (-7,7) is the only solution of the form |x|=|y|
|
Posted by Daniel
on 2006-08-27 11:32:59 |