All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Freecell (Posted on 2006-09-06) Difficulty: 2 of 5
I have an addiction of sorts - I can't keep from playing Freecell. (Most "Windows" users have access to this game from their "Start" menu.) There was once a theory that every possible deal is winnable in this game (this has apparently been disproven).

How many essentially different deals are there in Freecell?

Freecell setup: deal a standard 52 card deck out into eight columns: four with seven cards and four with six. Two deals with only column order changed (i.e., that can be made identical by only switching the locations of particular columns) are not considered different in this context.

No Solution Yet Submitted by Cory Taylor    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution my way | Comment 2 of 7 |

The full card deck can be arranged in 52! ways :nterchanging the order of  the 4 sets of seven in the first group of 28 cards reduces this number  4! times , so does interchanging the order of  the 4 sets of six in the remaining part :===>reduces this number another  4! times , 

therefore the answer is 52!/((4!)^2)


  Posted by Ady TZIDON on 2006-09-06 10:08:23
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information