All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math > Calculus
Weird Function Challenge II (Posted on 2006-10-01) Difficulty: 5 of 5
Find a continuous, strictly monotonic function f:R->R (R the set of real numbers) which is non-differentiable on a very dense set.

For this problem, we'll call a set of real numbers very dense if it intersects every interval [a,b] in an infinite, uncountable number of elements.

See The Solution Submitted by JLo    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
I'm still here ... | Comment 10 of 11 |
Nothing new to contribute.  I agree with vswitchs' point that any summation of countable functions which have a countable number of non-differentiable points results in a final function which has a countable number of non-differentiable points.
  Posted by Steve Herman on 2006-10-31 08:37:16
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information