All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Angle Trisection (Posted on 2006-11-09) Difficulty: 3 of 5
ΔABC is equilateral. Point D lies on line BC such that C lies between B and D. Point E lies on side AC such that ED bisects angle ADC. Point F lies on side AB such that FE and BC are parallel. Point G lies on side BC such that GF=EF.

Prove that angle DAC equals twice angle GAC.

See The Solution Submitted by Bractals    
Rating: 2.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Partial Solution | Comment 1 of 6
If we can show that CAG:CAD is constant it is sufficient to look at the limit at AD goes to infinity.

When this happens, DEC = EDA => 0
CAD => 60
FE => 1/2 BC
EFG => 60
GAC => 30

CAG:CAD = 2:1

  Posted by Eric on 2006-11-09 21:18:59
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information