Let the roots be a, k*a, k^2*a, and k^3*a. Then
(x-a)*(x-k*a)*(x-k^2*a)*(x-k^3*a) =
x^4 - a*(k+1)*(k^2+1)*x^3 +
a*2*k*(k^4+k^3+2k^2+k+1)*x^2 -
a^3*k^3*(k+1)*(k^2+1)*x + a^4*k^6
Thus,
a*(k+1)*(k^2+1) = 15
a*2*k*(k^4+k^3+2k^2+k+1) = 70
a^3*k^3*(k+1)*(k^2+1) = 120
a^4*k^6 = m
Therefore,
15*a^2*k^3 = a^2*k^3*[a*(k+1)*(k^2+1)] = 120
or
a^2*k^3 = 8
Hence,
m = a^4*k^6 = 64
The roots of
x^4 - 15x^3 + 70x^2 -120x + 64 = 0
are 1, 2, 4, and 8.
|
Posted by Bractals
on 2006-11-24 06:56:50 |