Let p(x)=x^4+ax^3+bx^2+cx+d, where a, b, c, and d are constants.
If p(1)=-9, p(2)=-18, and p(3)=-27, find the value of
¼(p(10)+p(-6)).
Setting up simultaneous equations:
1 + a + b + c + d = -9
16 + 8a + 4b + 2c + d = -18
81 + 27a + 9b + 3c + d = -27
results in each of b, c, d's dependence on a as:
b = -6a - 25
c = 11a + 51
d = -36 - 6a
This program accepts any value for a, and produces the various values for b, c and d, and verifies the given values of the polynomial for x=1, 2 and 3, and the value of the given expression:
DO
INPUT a
b = -6 * a - 25
c = 11 * a + 51
d = -36 - 6 * a
PRINT a; b; c; d
x = 1
PRINT x ^ 4 + a * x ^ 3 + b * x ^ 2 + c * x + d
x = 2
PRINT x ^ 4 + a * x ^ 3 + b * x ^ 2 + c * x + d
x = 3
PRINT x ^ 4 + a * x ^ 3 + b * x ^ 2 + c * x + d
x = 10
t = x ^ 4 + a * x ^ 3 + b * x ^ 2 + c * x + d
x = -6
t = t + x ^ 4 + a * x ^ 3 + b * x ^ 2 + c * x + d
PRINT t / 4
LOOP
For various values it finds:
? 0
0 -25 51 -36
-9 -18 -27
2007
? 1
1 -31 62 -42
-9 -18 -27
2007
? 2
2 -37 73 -48
-9 -18 -27
2007
? 3
3 -43 84 -54
-9 -18 -27
2007
? 4
4 -49 95 -60
-9 -18 -27
2007
? 5
5 -55 106 -66
-9 -18 -27
2007
? 6
6 -61 117 -72
-9 -18 -27
2007
? 7
7 -67 128 -78
-9 -18 -27
2007
? 8
8 -73 139 -84
-9 -18 -27
2007
? 9
9 -79 150 -90
-9 -18 -27
2007
? 10
10 -85 161 -96
-9 -18 -27
2007
? 11
11 -91 172 -102
-9 -18 -27
2007
but perhaps the most satisfying is when a=-5:
? -5
-5 5 -4 -6
-9 -18 -27
2007
indicating that then: b=5, c=-4, d=-6.
The values for x=1, 2 and 3 are verified, and as in all of these occasions, the requested value is the current year number,
2007.
|
Posted by Charlie
on 2007-03-16 13:59:30 |