P is a 17 digit positive integer and Q is obtained by writing the digits of P backwards. If neither P nor Q has leading zeroes, can P+Q include no even digits?
(In reply to
re: solution by Charlie)
Some examples of the 5-digit case where the even digit(s) is/are not in the middle:
15681 + 18651 = 34332
18535 + 53581 = 72116
22496 + 69422 = 91918
23894 + 49832 = 73726
25164 + 46152 = 71316
28192 + 29182 = 57374
28452 + 25482 = 53934
28535 + 53582 = 82117
33772 + 27733 = 61505
48231 + 13284 = 61515
56972 + 27965 = 84937
57370 + 07375 = 64745
58141 + 14185 = 72326
66241 + 14266 = 80507
67791 + 19776 = 87567
68071 + 17086 = 85157
79330 + 03397 = 82727
|
Posted by Charlie
on 2007-08-15 11:55:08 |