All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Perfect Squares (Posted on 2003-04-05) Difficulty: 5 of 5
Show that the numbers of the form:

444444....4444888888....8889

[Where there are 'k' Fours, '(k-1)' Eights and 'Exactly One' 9],

are always perfect squares.

(For example the sequence of numbers: 49, 4489, 444889, ....etc. and so on are always perfect squares).

See The Solution Submitted by Ravi Raja    
Rating: 4.0000 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(2): solution | Comment 6 of 10 |
(In reply to re: solution by Ravi Raja)

I was thinking about 4((10^x)+2)*(x 1s) + 1 for how to do that sequence.

('x 1s' is the sum of (10^x)+(10^x-1)+...+(10^1))

Would that help at all or is it too complicated?

  Posted by Gamer on 2003-04-06 04:44:16

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information