All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math > Calculus
Getting Natural With Pi (Posted on 2007-11-27) Difficulty: 3 of 5
Determine the value of the constant y, whenever:
       y
     (ex - 1)-0.5 dx = pi/6 
      ln(4/3)

where ln x denotes the natural logarithm of x.

See The Solution Submitted by K Sengupta    
Rating: 3.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution There are two solutions | Comment 4 of 8 |
We can easily solve the indefinite integral by substituting e^x = u, and then u = sec^2 theta, to yield: 2 arccos(e^-0.5x) + C

We use this to solve the definite integral and obtain:
2 arccos(e^-0.5y) - 2 arccos(ħsqrt(3)/2) = pi/6
2 arccos(e^-0.5y) - 2 ({ħpi/6, 5pi/6, 7pi/6} + 2n pi) = pi/6
where {...} denotes a list, and n represents any integer

2 arccos(e^-0.5y) - ({ħpi/3, 5pi/3, 7pi/3} + 4n pi) = pi/6
2 arccos(e^-0.5y) = pi/6 + {ħpi/3, 5pi/3, 7pi/3} + 4n pi
2 arccos(e^-0.5y) = {pi/2, -pi/6, 11pi/6, 15pi/6} + 4n pi
arccos(e^-0.5y) = {pi/4, -pi/12, 11pi/12, 15pi/12} + 2n pi
e^-0.5y = cos({pi/4, -pi/12, 11pi/12, 15pi/12} + 2n pi)
e^-0.5y = cos({pi/4, -pi/12, 11pi/12, 15pi/12})
e^-0.5y = {ħsqrt(2)/2, ħsqrt(2+abs(sqrt(3)))/2}
-0.5y = {ln ħsqrt(2)/2, ln(ħsqrt(2+abs(sqrt(3)))/2)}
-0.5y = {0.5 ln 0.5, 0.5 ln((2+abs(sqrt(3)))/4)}
y = {ln 2, ln(8-4abs(sqrt(3)))}

Both are correct. Please note that ln(8-4abs(sqrt(3))) < ln(4/3) < ln 2.

  Posted by Kurious on 2007-11-27 18:54:23
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information