All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Magic Cubic (Posted on 2005-11-28) Difficulty: 2 of 5
Number the corners of a cube from 1 to 8, so that the sum of the four corners of every face is the same.

No Solution Yet Submitted by sragen    
Rating: 3.0000 (7 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: 144 solutions to this problem | Comment 13 of 15 |
(In reply to 144 solutions to this problem by ritesh)

The following program verifies that there are 144 ways of assigning values 1 - 8 to positions A - H, that satisfy the conditions of the puzzle, but many such represent the same cube rotated into a new position. For any given cube, the 1, say, can be placed in any of the 8 positions; then any chosen vertex that's next to the 1 can be put in any one of three positions (D, B or E, if the 1 is at A) without changing the cube itself. So that's 8x3=24 ways of orienting the same cube, that show up as different assignments of 1 - 8 to A - H.

Also a reflection of the cube in a mirror is a trivial variation.

So 144/24 = 6 distinct cubes, which are really 2 trivial variations (reflections) of 3 distinct cubes, shown below:

1        8
  4    5
  7    2
6        3
----------
1        8
  4    5
  6    3
7        2
----------
1        8
  6    3
  4    5
7        2

For completeness consider also the mirror reflections of these cubes.

DECLARE SUB permute (a$)
CLS
s$ = "12345678": h$ = s$
DO
  a = VAL(MID$(s$, 1, 1))
  b = VAL(MID$(s$, 2, 1))
  c = VAL(MID$(s$, 3, 1))
  d = VAL(MID$(s$, 4, 1))
  e = VAL(MID$(s$, 5, 1))
  f = VAL(MID$(s$, 6, 1))
  g = VAL(MID$(s$, 7, 1))
  h = VAL(MID$(s$, 8, 1))
  s1 = a + b + c + d
  s2 = b + c + f + g
  s3 = f + g + e + h
  s4 = e + h + a + d
  s5 = a + b + f + e
  s6 = d + c + g + h
  IF s1 = s2 AND s2 = s3 AND s3 = s4 AND s4 = s5 AND s5 = s6 THEN
    x = d: y = b: z = e
    IF x > y THEN SWAP x, y
    IF y > z THEN SWAP y, z
    IF x > y THEN SWAP x, y
    ident$ = LTRIM$(STR$(x)) + LTRIM$(STR$(y)) + LTRIM$(STR$(z))
    good = 1
    FOR i = 1 TO ctU
     IF ident$ = had$(i) THEN good = 0: EXIT FOR
    NEXT
    IF a = 1 AND good = 1 THEN
      PRINT a; "      "; d
      PRINT "  "; b; "  "; c
      PRINT "  "; f; "  "; g
      PRINT e; "      "; h
      ctU = ctU + 1
      PRINT
      PRINT "------------"
      PRINT
      had$(ctU) = ident$
    END IF
    ct = ct + 1
  END IF
  permute s$
LOOP UNTIL s$ = h$
PRINT ct

 

 

Edited on November 29, 2007, 10:44 am
  Posted by Charlie on 2007-11-29 10:32:39

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information