sum k=1..oo of (1+2+3+...k)/(1*2*3*...*k)
sum k=1..oo of k(k+1)/k!2
1/2 sum k=1..oo of (k+1)/(k-1)!
Setting u=k-1
1/2 sum u=0..oo of (u+2)/u!
1/2 (2 + sum u=1..oo of (u+2)/u!)
1 + 1/2 sum u=1..oo of (u+2)/u!
1 + 1/2 [(sum u=1..oo of 1/(u-1)!) + (2 sum u=1..oo of 1/u!)]
1 + 1/2 (sum u=1..oo of 1/(u-1)!) + (sum u=1..oo of 1/u!)
Setting w=u-1
1 + 1/2 (sum w=0..oo of 1/w!) + (sum u=1..oo of 1/u!)
1 + 1/2 (sum w=0..oo of 1/w!) + (sum u=0..oo of 1/u!) - 1
3/2 (sum u=0..oo of 1/u!)
3/2 e
3e/2
Since the sum series is convergent (to 3e/2), the limit must be zero.
|
Posted by Kurious
on 2008-01-06 16:46:35 |