Hi!
Let be I the intersection ppoint of the interior bisector!
AAc=b*sin(C/2) ; AAb=c*sin(B/2) and AcAAb angle is 90-A/2
Cos theorem in AcAAb triangle give us :
(AcAb)^2=(b*sin(C/2))^2+(c*sin(B/2)^2-2*b*c*sin(A/2)*sin(B/2)*sin(C/2).
I use now the identity cos(A)+cos(B)+cos(C)=1+4*sin(A/2)sin(B/2)sin(C/2) and after replacing sin(C/2)^2 with (1-cos(C))/2 and sin(B/2)^2 with (1-cos(B))/2 i found that
2*(AcAb)^2 = b^2+c^2+b*c-b^2*cos(C)-c^2*cos(B)-b*c*(cos(B)+cos(C)) - b*c*cos(A)
but a=c*cos(B)+b*cos(C) and b*c*cos(A)=(b^2+c^2-a^2)/2 and after replacing and make some calculus i found that
4*(AcAb)^2 = b^2+c^2+a^2+2*b*c-2*a*b-2*a*c = (b+c-a)^2
Therefore
|AcAb|=(-a+b+c) /2
If we make the similar calculus for BcBa and CaCb we found
|BcBa| =(a-b+c) /2
|CaCb| = (a+b-c) /2
So |AcAb| + |BcBa| + |CaCb| = (a+b+c) /2 = s.
Nice puzzle!