y1³/y1y2 + y2³/y2y3 + y3³/y1y3 = -8 substitute y³=-b(y+1), we get (y1+1)/y1y2 + (y2+1)/y2y3 + (y3+1)/y1y3 = 8/b 1/y1+1/y2+1/y3+1/y1y2+1/y2y3+1/y3y1 = 8/b 1/y1,1/y2,1/y3 are roots of by³+by²+1=0 1/y1+1/y2+1/y3 = -1 1/y1y2+1/y2y3+1/y3y1=0 So, 8/b=-1 => b=-8 y³-8y-8=0 is the cubic equation => (y+2)(y²-2y-4)=0 => y=-2,1+√5 and 1-√5 are the solutions.