from Vieta's Formulas we have
y1+y2+y3=0
y1y2+y2y3+y1y3=b
y1y2y3=-b
also we have y^3=-b(y+1)
combining the fractions in the equation we get
[y1^3y3+y2^3y1+y3^3y2]/(y1y2y3)=-8
substituting we get
[-b(y1+1)y3-by1(y2+1)-by2(y3+1)/-b=-8
y3(y1+1)+y1(y2+1)+y2(y3+1)=-8
(y1+y2+y3)+(y1y2+y2y3+y1y3)=-8
thus
b=-8
y^3-8y-8=0
y= 1+sqrt(5), 1-sqrt(5), -2 thus
y1=1+sqrt(5)
y2=1-sqrt(5)
y3=-2
blackjack
flooble's webmaster puzzle